Advertisement

Geographic Distribution of Congenital Heart Disease: A Single Surgical Center Experience

Published:September 01, 2021DOI:https://doi.org/10.1016/j.jpeds.2021.08.080

      Objective

      To determine presence of spatial clustering or dispersion of pre and postnatally detected hypoplastic left heart syndrome (HLHS) and d-transposition of the great arteries (TGA) cases.

      Study design

      This retrospective study examined all patients with a prenatal or postnatal diagnosis of HLHS or TGA who had an initial visit or hospitalization at our tertiary care center over a 5-year period from 2012 to 2016 (n = 105). Using geographic information systems software, the nearest neighbor ratio (NNR) tool was used to determine whether statistically significant clustering or dispersion occurred.

      Results

      Geographic clustering was observed among prenatally diagnosed pooled cases of HLHS and TGA and all total cases (NNR = 0.73 and 0.66, respectively), but not postnatally detected cases (NNR = 1.08). Notably, there was significant dispersion of postnatally detected TGA cases (NNR = 1.22) There was no pattern for prenatally detected TGA or HLHS when analyzed individually.

      Conclusions

      The spatial distribution of HLHS and TGA is not random; these conditions occur in geographic clusters. Clustering of all patients in the study population and dispersion of postnatal diagnosis of TGA represent opportunities for improved delivery of fetal cardiac care.

      Keywords

      Abbreviations:

      CHD (Congenital heart disease), HLHS (Hypoplastic left heart syndrome), NNR (Nearest neighbor ratio), TGA (d-transposition of the great arteries)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Pediatrics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bakker M.K.
        • Bergman J.E.H.
        • Krikov S.
        • Amar E.
        • Cocchi G.
        • Cragan J.
        • et al.
        Prenatal diagnosis and prevalence of critical congenital heart defects: an international retrospective cohort study.
        BMJ Open. 2019; 9: 1-12
        • Bonnet D.
        • Coltri A.
        • Butera G.
        • Fermont L.
        • Le Bidois J.
        • Kachaner J.
        • et al.
        Detection of transposition of the great arteries in fetuses reduces neonatal morbidity and mortality.
        Circulation. 1999; 99: 916-918
        • Tworetzky W.
        • McElhinney D.B.
        • Reddy V.M.
        • Brook M.M.
        • Hanley F.L.S.N.
        Improved Surgical outcome after fetal diagnosis of hypoplastic left heart syndrome.
        Circulation. 2001; 103: 1269-1273
        • Morris S.A.
        • Ethen M.K.
        • Penny D.J.
        • Canfield M.A.
        • Minard C.G.
        • Fixler D.E.
        • et al.
        Prenatal diagnosis, birth location, surgical center, and neonatal mortality in infants with hypoplastic left heart syndrome.
        Circulation. 2014; 129: 285-292
        • Donofrio M.T.
        • Levy R.J.
        • Schuette J.J.
        • Skurow-Todd K.
        • Sten M.B.
        • Stallings C.
        • et al.
        Specialized delivery room planning for fetuses with critical congenital heart disease.
        Am J Cardiol. 2013; 111: 737-747
        • Séguéla P.E.
        • Roubertie F.
        • Kreitmann B.
        • Mauriat P.
        • Tafer N.
        • Jalal Z.
        • et al.
        Transposition of the great arteries: rationale for tailored preoperative management.
        Arch Cardiovasc Dis. 2017; 110: 124-134
        • Friedberg M.K.
        • Silverman N.H.
        • Moon-Grady A.J.
        • Tong E.
        • Nourse J.
        • Sorenson B.
        • et al.
        Prenatal detection of congenital heart disease.
        J Pediatr. 2009; 155: 26-31.e1
        • van Velzen C.L.
        • Ket J.C.F.
        • van de Ven P.M.
        • Blom N.A.
        • Haak M.C.
        Systematic review and meta-analysis of the performance of second-trimester screening for prenatal detection of congenital heart defects.
        Int J Gynecol Obstet. 2018; 140: 137-145
        • Peiris V.
        • Singh T.P.
        • Tworetzky W.
        • Chong E.C.
        • Gauvreau K.
        • Brown D.W.
        Association of socioeconomic position and medical insurance with fetal diagnosis of critical congenital heart disease.
        Circ Cardiovasc Qual Outcomes. 2009; 2: 354-360
        • Ailes E.C.
        • Gilboa S.M.
        • Riehle-Colarusso T.
        • Johnson C.Y.
        • Hobbs C.A.
        • Correa A.
        • et al.
        Prenatal diagnosis of nonsyndromic congenital heart defects.
        Prenat Diagn. 2014; 34: 214-222
        • Krishnan A.
        • Jacobs M.B.
        • Morris S.A.
        • Peyvandi S.
        • Bhat A.H.
        • Chelliah A.
        • et al.
        Impact of socioeconomic status, race and ethnicity, and geography on prenatal detection of hypoplastic left heart syndrome and transposition of the great arteries.
        Circulation. 2021; 143: 2049-2060
        • Nelson J.S.
        • Strassle P.D.
        Regional differences in right versus left congenital heart disease diagnoses in neonates in the United States.
        Birth Defects Res. 2018; 110: 325-335
        • Husain S.A.
        • Pasquali S.K.
        • Jacobs J.P.
        • Hill K.D.
        • Kim S.
        • Kane L.C.
        • et al.
        Congenital heart operations performed in the first year of life: does geographic variation exist?.
        Ann Thorac Surg. 2014; 98: 912-918
        • Quartermain M.D.
        • Pasquali S.K.
        • Hill K.D.
        • Goldberg D.J.
        • Huhta J.C.
        • Jacobs J.P.
        • et al.
        Variation in prenatal diagnosis of congenital heart disease in infants.
        Pediatrics. 2015; 136: e378-e385
        • Sekar P.
        • Heydarian H.C.
        • Cnota J.F.
        • Hornberger L.K.
        • Michelfelder E.C.
        Diagnosis of congenital heart disease in an era of universal prenatal ultrasound screening in southwest Ohio.
        Cardiol Young. 2015; 25: 35-41
        • Hill G.D.
        • Block J.R.
        • Tanem J.B.
        • Frommelt M.A.
        Disparities in the prenatal detection of critical congenital heart disease.
        Prenat Diagn. 2015; 35: 859-863
      1. How Average Nearest Neighbor Works. Esri n.d.
        (Accessed July 5, 2021)
      2. Optimized Hot Spot Analysis (Spatial Statistics). Esri n.d.
        (Accessed July 5, 2021)
        • Nelson J.S.
        • Stebbins R.C.
        • Strassle P.D.
        • Meyer R.E.
        Geographic distribution of live births with tetralogy of Fallot in North Carolina 2003 to 2012.
        Birth Defects Res A Clin Mol Teratol. 2016; 106: 881-887
        • Barboza G.A.
        Secondary spatial analysis of gun violence near Boston schools: a public health approach.
        J Urban Heal. 2018; 95: 344-360
        • Sun H.Y.
        • Proudfoot J.A.
        • McCandless R.T.
        Prenatal detection of critical cardiac outflow tract anomalies remains suboptimal despite revised obstetrical imaging guidelines.
        Congenit Heart Dis. 2018; 13: 748-756
        • D.C. Department of Health
        Health Equity Report for the District of Columbia 2018. Government of the District of Columbia, Washington, DC2018
        • Cronk C.E.
        • Gangnon R.
        • Cossette S.
        • McElroy J.A.
        • Pelech A.N.
        Modeling geographic risk of complex congenital heart defects in Eastern Wisconsin.
        Birth Defects Res A Clin Mol Teratol. 2011; 91: 631-641
        • Zheng J.Y.
        • Qiu Y.G.
        • Li D.T.
        • He J.C.
        • Chen Y.
        • Cao Y.
        • et al.
        Prevalence and composition of CHD at different altitudes in Tibet: a cross-sectional study.
        Cardiol Young. 2017; 27: 1497-1503
        • Dadvand P.
        • Rankin J.
        • Rushton S.
        • Pless-Mulloli T.
        Ambient air pollution and congenital heart disease: a register-based study.
        Environ Res. 2011; 111: 435-441