Advertisement

Neonatal Reference Intervals for the Complete Blood Count Parameters MicroR and HYPO-He: Sensitivity Beyond the Red Cell Indices for Identifying Microcytic and Hypochromic Disorders

Published:August 10, 2021DOI:https://doi.org/10.1016/j.jpeds.2021.08.002

      Objective

      To create neonatal reference intervals for the MicroR and HYPO-He complete blood count (CBC) parameters and to test whether these parameters are sensitive early markers of disease at early stages of microcytic/hypochromic disorders while the CBC indices are still normal.

      Study design

      We retrospectively collected the CBC parameters MicroR and HYPO-He, along with the standard CBC parameters, from infants aged 0-90 days at Intermountain Healthcare hospitals using Sysmex hematology analyzers. We created reference intervals for these parameters by excluding values from neonates with proven microcytic disorders (ie, iron deficiency or alpha thalassemia) from the dataset.

      Result

      From >11 000 CBCs analyzed, we created reference intervals for MicroR and HYPO-He in neonates aged 0-90 days. The upper intervals are considerably higher in neonates than in adults, validating increased anisocytosis and polychromasia among neonates. Overall, 52% of neonates with iron deficiency (defined by reticulocyte hemoglobin equivalent <25 pg) had a MicroR >90% upper interval (relative risk, 4.14; 95% CI, 3.80-4.53; P < .001), and 68% had an HYPO-He >90% upper interval (relative risk, 6.64; 95% CI, 6.03-7.32; P < .001). These 2 new parameters were more sensitive than the red blood cell (RBC) indices (P < .001) in identifying 24 neonates with iron deficiency at birth.

      Conclusions

      We created neonatal reference intervals for MicroR and HYPO-He. Although Sysmex currently designates these as research use only in the US, they can be measured as part of a neonate’s CBC with no additional phlebotomy volume or run time and can identify microcytic and hypochromic disorders even when the RBC indices are normal.

      Keywords

      Abbreviations:

      CBC (Complete blood count), MCH (Mean corpuscular hemoglobin), MCV (Mean corpuscular volume), RBC (Red blood cell), RET-He (Reticulocyte hemoglobin equivalent)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Pediatrics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Urrechaga E.
        • Borque L.
        • Escanero J.F.
        Potential utility of the new Sysmex XE 5000 red blood cell extended parameters in the study of disorders of iron metabolism.
        Clin Chem Lab Med. 2009; 47: 1411-1416
        • Urrechaga E.
        • Borque L.
        • Escanero J.F.
        Percentage of hypochromic erythrocytes as a potential marker of iron availability.
        Clin Chem Lab Med. 2011; 50: 685-687
        • Urrechaga E.
        • Boveda O.
        • Aguayo F.J.
        • de la Hera P.
        • Muñoz R.I.
        • Gallardo I.
        • et al.
        Percentage of hypochromic erythrocytes and reticulocyte hemoglobin equivalent predictors of response to intravenous iron in hemodialysis patients.
        Int J Lab Hematol. 2016; 38: 360-365
        • Smock K.J.
        Examination of the blood and bone marrow.
        in: Greer J.P. Rodgers G.M. Glader B. Arber D.A. Means Jr., R.T. List A.F. Wintrobe’s clinical hematology. 14th ed. Wolters Kluwer, Philadelphia2019: 1-16
        • Wintrobe M.M.
        Classification of the anemias on the basis of differences in the size and hemoglobin content of the red corpuscles.
        Proc Soc Exp Biol Med. 1930; 27: 1071-1073
        • Buttarello M.
        • Pajola R.
        • Novello E.
        • Rebeschini M.
        • Cantaro S.
        • Oliosi F.
        • et al.
        Diagnosis of iron deficiency in patients undergoing hemodialysis.
        Am J Clin Pathol. 2010; 133: 949-954
        • Urrechaga E.
        • Borque L.
        • Escanero J.F.
        The role of automated measurement of RBC subpopulations in differential diagnosis of microcytic anemia and β-thalassemia screening.
        Am J Clin Pathol. 2011; 135: 374-379
        • Urrechaga E.
        Red blood cell microcytosis and hypochromia in the differential diagnosis of iron deficiency and beta-thalassaemia trait.
        Int J Lab Hematol. 2009; 31: 528-534
        • Urrechaga E.
        Discriminant value of % microcytic/% hypochromic ratio in the differential diagnosis of microcytic anemia.
        Clin Chem Lab Med. 2008; 46: 1752-1758
        • Urrechaga E.
        • Borque L.
        • Escanero J.F.
        Erythrocyte and reticulocyte parameters in iron deficiency and thalassemia.
        J Clin Lab Anal. 2011; 25: 223-228
        • German K.
        • Vu P.T.
        • Irvine J.D.
        • Juul S.E.
        Trends in reticulocyte hemoglobin equivalent values in critically ill neonates, stratified by gestational age.
        J Perinatol. 2019; 39: 1268-1274
        • Bahr T.M.
        • Baer V.L.
        • Ohls R.K.
        • Christensen T.R.
        • Ward D.M.
        • Bennett S.T.
        • et al.
        Reconciling markedly discordant values of serum ferritin versus reticulocyte hemoglobin content.
        J Perinatol. 2021; 41: 319-326
        • Gerday E.
        • Brereton J.B.
        • Bahr T.M.
        • Elmont J.O.
        • Fullmer S.
        • Middleton B.A.
        • et al.
        Urinary ferritin; a potential noninvasive way to screen NICU patients for iron deficiency.
        J Perinatol. 2021; 41: 1419-1425
        • Judkins A.J.
        • MacQueen B.C.
        • Christensen R.D.
        • Henry E.
        • Snow G.L.
        • Bennett S.T.
        Automated quantification of fragmented red blood cells: neonatal reference intervals and clinical disorders of neonatal intensive care unit patients with high values.
        Neonatology. 2019; 115: 5-12
        • Bahr T.M.
        • Judkins A.J.
        • Christensen R.D.
        • Baer V.L.
        • Henry E.
        • Minton S.D.
        • et al.
        Neonates with suspected microangiopathic disorders: performance of standard manual schistocyte enumeration vs. the automated fragmented red cell count.
        J Perinatol. 2019; 39: 1555-1561
        • Bahr T.M.
        • Judkins A.J.
        • Baer V.L.
        • Henry E.
        • Grubb P.H.
        • Hulse W.
        • et al.
        The fragmented red cell count can support the diagnosis of a microangiopathic neonatal condition.
        J Perinatol. 2020; 40: 354-355
        • Chui D.H.
        Alpha-thalassemia: Hb H disease and Hb Barts hydrops fetalis.
        Ann N Y Acad Sci. 2005; 1054: 25-32
        • Christensen R.D.
        • Yaish H.M.
        • Gallagher P.G.
        A pediatrician's practical guide to diagnosing and treating hereditary spherocytosis in neonates.
        Pediatrics. 2015; 135: 1107-1114
        • Phillips A.K.
        • Roy S.C.
        • Lundberg R.
        • Guilbert T.W.
        • Auger A.P.
        • Blohowiak S.E.
        • et al.
        Neonatal iron status is impaired by maternal obesity and excessive weight gain during pregnancy.
        J Perinatol. 2014; 34: 513-518
        • Jones A.D.
        • Zhao G.
        • Jiang Y.P.
        • Zhou M.
        • Xu G.
        • Kaciroti N.
        • et al.
        Maternal obesity during pregnancy is negatively associated with maternal and neonatal iron status.
        Eur J Clin Nutr. 2016; 70: 918-924
        • Bahr T.M.
        • Benson A.E.
        • Kling P.J.
        • Ohls R.K.
        • Ward D.M.
        • Christensen R.D.
        Maternal obesity and impaired offspring neurodevelopment: could fetal iron deficiency be a pathogenic link?.
        J Perinatol. 2021; 41: 1199-1200
        • Bahr T.M.
        • Lozano-Chinga M.
        • Agarwal A.M.
        • Meznarich J.A.
        • Gerday E.
        • Smoot J.L.
        • et al.
        Dizygotic twins with prolonged jaundice and microcytic, hypochromic, hemolytic anemia with pyropoikilocytosis.
        Blood Cells Mol Dis. 2020; 85: 102462
        • Christensen R.D.
        • Jopling J.
        • Henry E.
        • Wiedmeier S.E.
        The erythrocyte indices of neonates, defined using data from over 12,000 patients in a multihospital health care system.
        J Perinatol. 2008; 28: 24-28
        • Henry E.
        • Christensen R.D.
        Reference intervals in neonatal hematology.
        Clin Perinatol. 2015; 42: 483-497
        • Wintrobe M.M.
        A simple and accurate hematocrit.
        J Lab Clin Med. 1929; 15: 287-289
        • Wintrobe M.M.
        The volume and hemoglobin content of the red blood corpuscle: simple method of calculation, normal findings, and value of such calculations in the anemias.
        Am J Med Sci. 1929; 177: 513-523
        • Georgieff M.K.
        Iron deficiency in pregnancy.
        Am J Obstet Gynecol. 2020; 223: 516-524
        • Siddappa A.M.
        • Olson R.M.
        • Spector M.
        • Northrop E.
        • Zamora T.
        • Brearley A.M.
        • et al.
        High prevalence of iron deficiency despite standardized high-dose iron supplementation during recombinant erythropoietin therapy in extremely low gestational age newborns.
        J Pediatr. 2020; 222: 98-105.e3
        • Cusick S.E.
        • Georgieff M.K.
        • Rao R.
        Approaches for reducing the risk of early-life iron deficiency-induced brain dysfunction in children.
        Nutrients. 2018; 10: 227
        • Zamora T.G.
        • Guiang 3rd, S.F.
        • Widness J.A.
        • Georgieff M.K.
        Iron is prioritized to red blood cells over the brain in phlebotomized anemic newborn lambs.
        Pediatr Res. 2016; 79: 922-928
        • MacQueen B.C.
        • Christensen R.D.
        • Ward D.M.
        • Bennett S.T.
        • O’Brien E.A.
        • Sheffield M.J.
        • et al.
        The iron status at birth of neonates with risk factors for developing iron deficiency: a pilot study.
        J Perinatol. 2017; 37: 436-440
        • MacQueen B.C.
        • Christensen R.D.
        • Baer V.L.
        • Ward D.M.
        • Snow G.L.
        Screening umbilical cord blood for congenital iron deficiency.
        Blood Cells Mol Dis. 2019; 77: 95-100
        • Wang J.
        • Zhao S.
        • Su Z.
        • Liu X.
        Analytical comparison between two hematological analyzer systems: Mindray BC-5180 vs Sysmex XN-1000.
        J Clin Lab Anal. 2019; 33: e22955
        • Małecka M.
        • Ciepiela O.
        A comparison of Sysmex-XN 2000 and Yumizen H2500 automated hematology analyzers.
        Pract Lab Med. 2020; 22: e00186

      Linked Article

      • A better way to detect iron deficiency?
        The Journal of PediatricsVol. 239
        • Preview
          Approximately 10% of US children under 3 years of age will experience some degree of iron deficiency that, even in the absence of overt anemia, has the potential for causing long-term cognitive defects. Clinicians are not only faced with conflicting guidance on screening for iron deficiency but also lack a straightforward method for doing so. About three-quarters of children with iron deficiency will have nominally normal hemoglobin levels and, because of the relatively long life of erythrocytes, changes in the traditional red cell indices associated with iron deficiency anemia are relatively late findings.
        • Full-Text
        • PDF