Advertisement

Inhaled Nitric Oxide Is Associated with Improved Oxygenation in a Subpopulation of Infants with Congenital Diaphragmatic Hernia and Pulmonary Hypertension

Published:November 06, 2019DOI:https://doi.org/10.1016/j.jpeds.2019.09.052

      Objectives

      To determine which patients with congenital diaphragmatic hernia (CDH) and pulmonary hypertension (PH) benefit from inhaled nitric oxide (iNO) treatment by comparing characteristics and outcomes of iNO responders to nonresponders.

      Study design

      We performed a retrospective chart review of infants with CDH treated at our center between 2011 and 2016. In a subset of patients, iNO was initiated for hypoxemia or echocardiographic evidence of extrapulmonary right to left shunting. Initial post-treatment blood gases were reviewed, and patients were classified as responders (increased PaO2 >20 mm Hg) or nonresponders. Baseline characteristics, echocardiograms and outcomes were compared between groups with Fisher exact tests and Mann-Whitney t tests, as appropriate.

      Results

      During the study period, 95 of 131 patients with CDH (73%) were treated with iNO. All patients with pretreatment echocardiograms (n = 90) had echocardiographic evidence of PH. Thirty-eight (40%) patients met treatment response criteria. Responders had significant improvements in PaO2 (51 ± 3 vs 123 ± 7 mm Hg, P < .01), alveolar-arterial gradient (422 ± 30 vs 327 ± 27 mm Hg, P < .01), and PaO2 to FiO2 ratio (82 ± 10 vs 199 ± 15 mm Hg, P < .01). Nonresponders were more likely to have left ventricular systolic dysfunction (27% vs 8%, P = .03) on echocardiogram. Responders were less likely to require extracorporeal membrane support (50 vs 24%, P = .02).

      Conclusions

      iNO treatment is associated with improved oxygenation and reduced need for ECMO in a subpopulation of patients with CDH with PH and normal left ventricular systolic function.

      Keywords

      Abbreviations:

      A-a (Alveolar-arterial), CDH (Congenital diaphragmatic hernia), ECMO (Extracorporeal membrane oxygenation), FiO2 (Fraction of inspired oxygen), iNO (Inhaled nitric oxide), LV (Left ventricular), LHR (Lung to head circumference ratio), PaO2 (Partial pressure of oxygen), P/F (PaO2 to FiO2 ratio), PH (Pulmonary hypertension)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Pediatrics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wynn J.
        • Krishnan U.
        • Aspelund G.
        • Zhang Y.
        • Duong J.
        • Stolar C.J.
        • et al.
        Outcomes of congenital diaphragmatic hernia in the modern era of management.
        J Pediatr. 2013; 163: 114-119.e1
        • Ichinose F.
        • Roberts Jr., J.D.
        • Zapol W.M.
        Inhaled nitric oxide: a selective pulmonary vasodilator: current uses and therapeutic potential.
        Circulation. 2004; 109: 3106-3111
        • Clark R.H.
        • Kueser T.J.
        • Walker M.W.
        • Southgate W.M.
        • Huckaby J.L.
        • Perez J.A.
        • et al.
        Low-dose nitric oxide therapy for persistent pulmonary hypertension of the newborn. Clinical Inhaled Nitric Oxide Research Group.
        N Engl J Med. 2000; 342: 469-474
        • Roberts Jr., J.D.
        • Fineman J.R.
        • Morin III, F.C.
        • Shaul P.W.
        • Rimar S.
        • Schreiber M.D.
        • et al.
        Inhaled nitric oxide and persistent pulmonary hypertension of the newborn. The Inhaled Nitric Oxide Study Group.
        N Engl J Med. 1997; 336: 605-610
        • Shah N.
        • Jacob T.
        • Exler R.
        • Morrow S.
        • Ford H.
        • Albanese C.
        • et al.
        Inhaled nitric oxide in congenital diaphragmatic hernia.
        J Pediatr Surg. 1994; 29: 1010-1014
        • Henneberg S.W.
        • Jepsen S.
        • Andersen P.K.
        Pedersen SA Inhalation of nitric oxide as a treatment of pulmonary hypertension in congenital diaphragmatic hernia.
        J Pediatr Surg. 1995; 30: 853-855
      1. Inhaled nitric oxide and hypoxic respiratory failure in infants with congenital diaphragmatic hernia. The Neonatal Inhaled Nitric Oxide Study Group (NINOS).
        Pediatrics. 1997; 99: 838-845
        • Campbell B.T.
        • Herbst K.W.
        • Briden K.E.
        • Neff S.
        • Ruscher K.A.
        • Hagadorn J.I.
        Inhaled nitric oxide use in neonates with congenital diaphragmatic hernia.
        Pediatrics. 2014; 134: e420-e426
        • Puligandla P.S.
        • Grabowski J.
        • Austin M.
        • Hedrick H.
        • Renaud E.
        • Arnold M.
        • et al.
        Management of congenital diaphragmatic hernia: a systematic review from the APSA outcomes and evidence based practice committee.
        J Pediatr Surg. 2015; 50: 1958-1970
        • Barrington K.J.
        • Finer N.
        • Pennaforte T.
        • Altit G.
        Nitric oxide for respiratory failure in infants born at or near term.
        Cochrane Database Syst Rev. 2017; 1: CD000399
        • Putnam L.R.
        • Tsao K.
        • Morini F.
        • Lally P.A.
        • Miller C.C.
        • Lally K.P.
        • et al.
        Evaluation of Variability in inhaled nitric oxide use and pulmonary hypertension in patients with congenital diaphragmatic hernia.
        JAMA Pediatr. 2016; 170: 1188-1194
        • Ruano R.
        • Benachi A.
        • Joubin L.
        • Aubry M.C.
        • Thalabard J.C.
        • Dumez Y.
        • et al.
        Three-dimensional ultrasonographic assessment of fetal lung volume as prognostic factor in isolated congenital diaphragmatic hernia.
        BJOG. 2004; 111: 423-429
        • Hedrick H.L.
        • Crombleholme T.M.
        • Flake A.W.
        • Nance M.L.
        • von Allmen D.
        • Howell L.J.
        • et al.
        Right congenital diaphragmatic hernia: prenatal assessment and outcome.
        J Pediatr Surg. 2004; 39 (discussion 23): 319-323
        • Lawrence K.M.
        • Hedrick H.L.
        • Monk H.M.
        • Herkert L.
        • Waqar L.N.
        • Hanna B.D.
        • et al.
        Treprostinil improves persistent pulmonary hypertension associated with congenital diaphragmatic hernia.
        J Pediatr. 2018; 200: 44-49
        • Jain A.
        • El-Khuffash A.F.
        • Kuipers B.C.W.
        • Mohamed A.
        • Connelly K.A.
        • McNamara P.J.
        • et al.
        Left ventricular function in healthy term neonates during the transitional period.
        J Pediatr. 2017; 182: 197-203.e2
        • Schwartz S.M.
        • Vermilion R.P.
        • Hirschl R.B.
        Evaluation of left ventricular mass in children with left-sided congenital diaphragmatic hernia.
        J Pediatr. 1994; 125: 447-451
        • Siebert J.R.
        • Haas J.E.
        • Beckwith J.B.
        Left ventricular hypoplasia in congenital diaphragmatic hernia.
        J Pediatr Surg. 1984; 19: 567-571
        • Baumgart S.
        • Paul J.J.
        • Huhta J.C.
        • Katz A.L.
        • Paul K.E.
        • Spettell C.
        • et al.
        Cardiac malposition, redistribution of fetal cardiac output, and left heart hypoplasia reduce survival in neonates with congenital diaphragmatic hernia requiring extracorporeal membrane oxygenation.
        J Pediatr. 1998; 133: 57-62
        • Altit G.
        • Bhombal S.
        • Van Meurs K.
        • Tacy T.A.
        Ventricular performance is associated with need for extracorporeal membrane oxygenation in newborns with congenital diaphragmatic hernia.
        J Pediatr. 2017; 191: 28-34.e1
        • Patel N.
        • Kipfmueller F.
        Cardiac dysfunction in congenital diaphragmatic hernia: pathophysiology, clinical assessment, and management.
        Semin Pediatr Surg. 2017; 26: 154-158
        • Tanaka T.
        • Inamura N.
        • Ishii R.
        • Kayatani F.
        • Yoneda A.
        • Tazuke Y.
        • et al.
        The evaluation of diastolic function using the Diastolic Wall Strain (DWS) before and after radical surgery for congenital diaphragmatic hernia.
        Pediatric Surg Int. 2015; 31: 905-910
        • Loh E.
        • Stamler J.S.
        • Hare J.M.
        • Loscalzo J.
        • Colucci W.S.
        Cardiovascular effects of inhaled nitric oxide in patients with left ventricular dysfunction.
        Circulation. 1994; 90: 2780-2785
        • Abman S.H.
        • Hansmann G.
        • Archer S.L.
        • Ivy D.D.
        • Adatia I.
        • Chung W.K.
        • et al.
        Pediatric pulmonary hypertension: guidelines from the American Heart Association and American Thoracic Society.
        Circulation. 2015; 132: 2037-2099
        • Puligandla P.S.
        • Skarsgard E.D.
        • Offringa M.
        • Adatia I.
        • Baird R.
        • Bailey M.
        • et al.
        • Canadian Congenital Diaphragmatic Hernia Collaborative
        Diagnosis and management of congenital diaphragmatic hernia: a clinical practice guideline.
        CMAJ. 2018; 190: E103-E112
        • Gien J.
        • Kinsella J.P.
        Management of pulmonary hypertension in infants with congenital diaphragmatic hernia.
        J Perinatol. 2016; 36: S28-S31
        • Kinsella J.P.
        • Steinhorn R.H.
        • Mullen M.P.
        • Hopper R.K.
        • Keller R.L.
        • Ivy D.D.
        • et al.
        The left ventricle in congenital diaphragmatic hernia: implications for the management of pulmonary hypertension.
        J Pediatr. 2018; 197: 17-22
        • Steinhorn R.H.
        Advances in neonatal pulmonary hypertension.
        Neonatology. 2016; 109: 334-344
        • Farrow K.N.
        • Groh B.S.
        • Schumacker P.T.
        • Lakshminrusimha S.
        • Czech L.
        • Gugino S.F.
        • et al.
        Hyperoxia increases phosphodiesterase 5 expression and activity in ovine fetal pulmonary artery smooth muscle cells.
        Circ Res. 2008; 102: 226-233

      Linked Article