Impact of Continuous vs Bolus Feeding on Splanchnic Perfusion in Very Low Birth Weight Infants: A Randomized Trial


      To detect changes in splanchnic perfusion and oxygenation induced by 2 different feeding regimens in infants with intrauterine growth restriction (IUGR) and those without IUGR.

      Study design

      This was a randomized trial in 40 very low birth weight infants. When an enteral intake of 100 mL/kg/day was achieved, patients with IUGR and those without IUGR were randomized into 2 groups. Group A (n = 20) received a feed by bolus (in 10 minutes), then, after at least 3 hours, received the same amount of formula by continuous nutrition over 3 hours. Group B (n = 20) received a feed administered continuously over 3 hours, followed by a bolus administration (in 10 minutes) of the same amount of formula after at least 3 hours. On the day of randomization, intestinal and cerebral regional oximetry was measured via near-infrared spectroscopy and Doppler ultrasound (US) of the superior mesenteric artery was performed. Examinations were performed before the feed and at 30 minutes after the feed by bolus and before the feed, at 30 minutes after the start of the feed, and at 30 minutes after the end of the feed for the 3-hour continuous feed.


      Superior mesenteric artery Doppler US showed significantly higher perfusion values after the bolus feeds than after the continuous feeds. Near-infrared spectroscopy values remained stable before and after feeds. Infants with IUGR and those without IUGR showed the same perfusion and oxygenation patterns.


      According to our Doppler US results, bolus feeding is more effective than continuous feeding in increasing splanchnic perfusion.

      Trial registration



      BFV (Blood flow velocity), CSOR (Cerebrosplanchnic oxygenation ratio), EDV (End-diastolic velocity), FTOE (Fractional tissue oxygen extraction), IUGR (Intrauterine growth restriction), MV (Mean velocity), NEC (Necrotizing enterocolitis), NICU (Neonatal intensive care unit), NIRS (Near-infrared spectroscopy), PSV (Peak systolic velocity), RI (Resistive index), rSaO2 (Regional abdominal oxygen saturation), rScO2 (Regional cerebral oxygen saturation), SMA (Superior mesenteric artery), US (Ultrasound), VLBW (Very low birth weight)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to The Journal of Pediatrics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Premji S.S.
        • Chessell L.
        Continuous nasogastric milk feeding versus intermittent bolus milk feeding for premature infants less than 1500 grams.
        Cochrane Database Syst Rev. 2011; 11: CD001819
        • Valman H.B.
        • Heath C.D.
        • Brown R.J.
        Continuous intragastric milk feeds in infants of low birth weight.
        Br Med J. 1972; 3: 547-550
        • Grant J.
        • Denne S.C.
        Effect of intermittent versus continuous enteral feeding on energy expenditure in premature infants.
        J Pediatr. 1991; 118: 928-932
        • Toce S.S.
        • Keenan W.J.
        • Homan S.M.
        Enteral feeding in very low-birth-weight infants: a comparison of two nasogastric methods.
        Am J Dis Child. 1987; 141: 439-444
        • Aynsley-Green A.
        New insights into the nutritional management of newborn infants derived from studies of metabolic and endocrine inter-relations during the adaptation to post-natal life.
        Proc Nutr Soc. 1989; 48: 283-292
        • Aynsley-Green A.
        • Lucas A.
        • Lawson G.R.
        • Bloom S.R.
        Gut hormones and regulatory peptides in relation to enteral feeding, gastroenteritis, and necrotizing enterocolitis in infancy.
        J Pediatr. 1990; 117: S24-S32
        • Lucas A.
        • Bloom S.R.
        • Aynsley-Green A.
        Gut hormones and “minimal enteral feeding.”.
        Acta Paediatr Scand. 1986; 75: 719-723
        • Krishnan V.
        • Satish M.
        • Robinson M.G.
        Continuous (C) vs. intermittent (I) nasogastric (N/G) feeding in very low birth weight (VLBW) infants.
        Pediatr Res. 1981; 15: 537
        • Urrutia J.
        • Poole E.
        Continuous nasogastric versus intermittent gavage feedings in very low birth weight infants.
        Pediatr Res. 1983; 17: 203A
        • Goldenberg R.L.
        • Culhane J.F.
        • Iams J.D.
        • Romero R.
        Epidemiology and causes of preterm birth.
        Lancet. 2008; 371: 75-84
        • Dorling J.
        • Kempley S.
        • Leaf A.
        Feeding growth restricted preterm infants with abnormal antenatal Doppler results.
        Arch Dis Child Fetal Neonatal. 2005; 90: F359-F363
        • Fang S.
        • Kempley S.T.
        • Gamsu H.R.
        Prediction of early tolerance to enteral feeding in preterm infants by measurement of superior mesenteric artery blood flow velocity.
        Arch Dis Child Fetal Neonatal Ed. 2001; 85: F42-F45
        • Matheson P.J.
        • Wilson M.A.
        • Garrison R.N.
        Regulation of intestinal blood flow.
        J Surg Res. 2000; 93: 182-196
        • Jacobson E.D.
        The splanchnic circulation.
        in: Johnson L.R. Gastrointestinal physiology. 4th ed. Mosby, St Louis (MO)1991: 142-161
        • Carver J.D.
        • Saste M.
        • Sosa R.
        • Zaritt J.
        • Kuchan M.
        • Barness L.A.
        The effects of dietary nucleotides on intestinal blood flow in preterm infants.
        Pediatr Res. 2002; 52: 425-429
        • Leidig E.
        Doppler analysis of superior mesenteric artery blood flow in preterm infants.
        Arch Dis Child. 1989; 64: 476-480
        • Martinussen M.
        • Brubakk A.M.
        • Vik T.
        • Yao A.C.
        Mesenteric blood flow velocity and its relation to transitional circulatory adaptation in appropriate for gestational age preterm infants.
        Pediatr Res. 1996; 39: 275-280
        • Yanowitz T.D.
        • Yao A.C.
        • Pettigrew K.D.
        • Werner J.C.
        • Oh W.
        • Stonestreet B.S.
        Postnatal hemodynamic changes in very-low-birthweight infants.
        J Appl Physiol. 1985; 1999: 370-380
        • Van Bel F.
        • Van Zoeren D.
        • Schipper J.
        • Guit G.L.
        • Baan J.
        Effect of indomethacin on superior mesenteric artery blood flow velocity in preterm infants.
        J Pediatr. 1990; 116: 965-970
        • Coombs R.C.
        • Morgan M.E.
        • Durbin G.M.
        • Booth I.W.
        • McNeish A.S.
        Gut blood flow velocities in the newborn: effects of patent ductus arteriosus and parenteral indomethacin.
        Arch Dis Child. 1990; 65: 1067-1071
        • Hoecker C.
        • Nelle M.
        • Poeschl J.
        • Beedgen B.
        • Lindercamp O.
        Caffeine impairs cerebral and intestinal blood flow velocity in preterm infants.
        Pediatrics. 2002; 109: 784-787
        • Lane A.J.
        • Coombs R.C.
        • Evans D.H.
        • Levin R.J.
        Effect of caffeine on neonatal splanchnic blood flow.
        Arch Dis Child Fetal Neonatal Ed. 1999; 80: F128-F129
        • Mittnacht A.J.
        Near infrared spectroscopy in children at high risk of low perfusion.
        Curr Opin Anaesthesiol. 2010; 23: 342-347
        • Fortune P.M.
        • Wagstaff M.
        • Petros A.J.
        Cerebro-splanchnic oxygenation ratio (CSOR) using near infrared spectroscopy may be able to predict splanchnic ischaemia in neonates.
        Intensive Care Med. 2001; 27: 1401-1407
        • Bahado-Singh R.O.
        • Kovanci E.
        • Jeffres A.
        • Oz U.
        • Deren O.
        • Copel J.
        • et al.
        The Doppler cerebroplacental ratio and perinatal outcome in intrauterine growth restriction.
        Am J Obstet Gynecol. 1999; 180: 750-756
        • Senn S.
        Cross-over trials in clinical research.
        Wiley, Chichester (UK)1993
        • Neu J.
        Necrotizing enterocolitis: the mystery goes on.
        Neonatology. 2014; 106: 289-295
        • Bozzetti V.
        • Tagliabue P.E.
        • Visser G.H.
        • van Bel F.
        • Gazzolo D.
        Feeding issues in IUGR preterm infants.
        Early Hum Dev. 2013; 89: S21-S23
        • Maruyama K.
        • Fujiu T.
        • Inoue T.
        • Koizumi A.
        • Inoue F.
        Feeding interval and postprandial intestinal blood flow in premature infants.
        Pediatr Int. 2013; 55: 472-476
        • Dietrich C.F.
        • Jedrzejczyk M.
        • Ignee A.
        Sonographic assessment of splanchnic arteries and the bowel wall.
        Eur J Radiol. 2007; 64: 202-212
        • Perko M.J.
        Duplex ultrasound for assessment of superior mesenteric artery blood flow.
        Eur J Vasc Endovasc Surg. 2001; 21: 106-117
        • Murdoch E.M.
        • Sinha A.K.
        • Shanmugalingam S.T.
        • Smith G.C.
        • Kempley S.T.
        Doppler flow velocimetry in the superior mesenteric artery on the first day of life in preterm infants and the risk of neonatal necrotizing enterocolitis.
        Pediatrics. 2006; 118: 1999-2003
        • Robel-Tillig E.
        • Knüpfer M.
        • Pulzer F.
        • Vogtmann C.
        Blood flow parameters of the superior mesenteric artery as an early predictor of intestinal dysmotility in preterm infants.
        Pediatr Radiol. 2004; 34: 958-962
        • Bora R.
        • Mukhopadhyay K.
        • Saxena A.K.
        • Jain V.
        • Narang A.
        Prediction of feed intolerance and necrotizing enterocolitis in neonates with absent end diastolic flow in umbilical artery and the correlation of feed intolerance with postnatal superior mesenteric artery flow.
        J Matern Fetal Neonatal Med. 2009; 22: 1092-1096
        • Thompson A.
        • Silva C.T.
        • Gork A.S.
        • Wang D.
        • Ehrenkranz R.A.
        Intestinal blood flow by Doppler ultrasound: the impact of gestational age and time from first enteral feeding in preterm neonates.
        Am J Perinatol. 2014; 31: 261-268
        • Kempley S.T.
        • Gamsu H.R.
        Superior mesenteric artery blood flow velocity in necrotising enterocolitis.
        Arch Dis Child. 1992; 67: 793-796
        • Coombs R.C.
        • Morgan M.E.
        • Durbin G.M.
        • Booth I.W.
        • McNeish A.S.
        Abnormal gut blood flow velocities in neonates at risk of necrotising enterocolitis.
        J Pediatr Gastroenterol Nutr. 1992; 15: 13-19
        • Itoh S.
        • Brawley L.
        • Wheeler T.
        • Anthony F.W.
        • Poston L.
        • Hanson M.A.
        Vasodilatation to vascular endothelial growth factor in the uterine artery of the pregnant rat is blunted by low dietary protein intake.
        Pediatr Res. 2002; 51: 485-491
        • Reber K.M.
        • Mager G.M.
        • Miller C.E.
        • Nowicki P.T.
        Relationship between flow rate and NO production in postnatal mesenteric arteries.
        Am J Physiol Gastrointest Liver Physiol. 2001; 280: G43-G50
        • Kochar N.I.
        • Chandewal A.V.
        • Bakal R.L.
        • Kochar P.N.
        Nitric oxide and the gastrointestinal tract.
        Int J Pharm. 2011; 7: 31-39
        • Kempley S.T.
        • Gamsu H.R.
        • Vyas S.
        • Nicolaides K.
        Effects of intrauterine growth retardation on postnatal visceral and cerebral blood flow velocity.
        Arch Dis Child. 1991; 66: 1115-1118
        • Bozzetti V.
        • Paterlini G.
        • van Bel Fv
        • Visser G.H.
        • Tosetti L.
        • Gazzolo D.
        • et al.
        Cerebral and somatic NIRS-determined oxygenation in IUGR preterm infants during transition.
        J Matern Fetal Neonatal Med. 2016; 29: 443-446
        • Nelle M.
        • Hoecker C.
        • Linderkamp O.
        Effects of bolus tube feeding on cerebral blood flow velocity in neonates.
        Arch Dis Child Fetal Neonatal Ed. 1997; 76: F54-F56
        • Teller J.
        • Schwendener K.
        • Wolf M.
        • Keel M.
        • Bucher H.U.
        • Fanconi S.
        • et al.
        Continuous monitoring of liver oxygenation with near infrared spectroscopy during naso-gastric tube feeding in neonates.
        Schweiz Med Wochenschr. 2000; 130: 652-656
        • Dani C.
        • Pratesi S.
        • Barp J.
        • Bestini G.
        • Gozzini E.
        • Mele L.
        • et al.
        Near-infrared spectroscopy measurements of splanchnic tissue oxygenation during continuous versus intermittent feeding method in preterm infants.
        J Pediatr Gastroenterol Nutr. 2013; 56: 652-656
        • Dave V.
        • Brion L.P.
        • Campbell D.E.
        • Scheiner M.
        • Raab C.
        • Nafday S.M.
        Splanchnic tissue oxygenation, but not brain tissue oxygenation, increases after feeds in stable preterm neonates tolerating full bolus orogastric feeding.
        J Perinatol. 2009; 29: 213-218
        • Gillam-Krakauer M.
        • Cochran C.M.
        • Slaughter J.C.
        • Polavarapu S.
        • McElroy S.J.
        • Hernanz-Schulman M.
        • et al.
        Correlation of abdominal rSO2 with superior mesenteric artery velocities in preterm infants.
        J Perinatol. 2013; 33: 609-612
        • Corvaglia L.
        • Martini S.
        • Battistini B.
        • Rucci P.
        • Aceti A.
        • Faldella G.
        Bolus vs continuous feeding: effects on splanchnic and cerebral tissue oxygenation in healthy preterm infants.
        Pediatr Res. 2014; 76: 81-85